skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Santilli, Mario"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We prove the rigidity ofrectifiableboundaries with constantdistributionalmean curvature in the Brendle class of warped product manifolds (which includes important models in general relativity, like the de Sitter–Schwarzschild and Reissner–Nordstrom manifolds).As a corollary, we characterize limits of rectifiable boundaries whose mean curvatures converge, as distributions, to a constant.The latter result is new, and requires the full strength of distributional CMC-rigidity, even when one considers smooth boundaries whose mean curvature oscillations vanish in arbitrarily strong C k C^{k}-norms.Our method also establishes that rectifiable boundaries of sets of finite perimeter in the hyperbolic space with constant distributional mean curvature are finite unions of possibly mutually tangent geodesic spheres. 
    more » « less
    Free, publicly-accessible full text available October 2, 2026
  2. We prove the rigidity of rectifiable boundaries with constant distributional mean curvature in the Brendle class of warped product manifolds (which includes important models in General Relativity, like the deSitter--Schwarzschild and Reissner--Nordstrom manifolds). As a corollary we characterize limits of rectifiable boundaries whose mean curvatures converge, as distributions, to a constant. The latter result is new, and requires the full strength of distributional CMC-rigidity, even when one considers smooth boundaries whose mean curvature oscillations vanish in arbitrarily strong C^k-norms. 
    more » « less
  3. null (Ed.)